First Round SOI 2018/2019

Solution Booklet

Swiss Olympiad in Informatics

October 1 — November 30, 2018

Task mergeball

1 Mergeball

In this task we're given the sizes by, ..., by-1 of N balls. The action we can perform with them is to
take 2 adjacent balls with the same size and merge them together, creating a new ball with double
the size.

Subtask 1: Final configuration with two balls (20 Points)

In this subtask we’re only given pairs of balls which we want to merge.

Because for each test case there are 2 balls and their sizes are the same, it’s enough to just print
their sum.

An example solution can be found here:

1 #include <bits/stdc++.h>

2 using namespace std;

3 int main(Q) {

4 int T; // T is the number of test cases

5 cin >> T;

6 for (int t = 0; t < T; t++) { // A loop to input each test case

7 int N, b0, bil; // b0 and bl are the sizes of the 2 balls
8 cin >> N >> b0® >> bl;

9 // For each test case we output the sum of the sizes

10 cout << "Case #" << t << ": " << (b® + bl) << "\n";

11 }

12 }

Subtask 2: All to one (20 Points)

This subtask is building on top of the first one, but this time we have to check if we can merge N
balls, all of which have the same size, into one single ball.

In order to solve it, we have to be smart — we can’t just take any 2 adjacent balls at each step and
merge them together. The reason for that is we might create a ball that divides 2 balls that could
have been merged and we end up with multiple of them, instead of a single one, essentially getting
stuck.

A way we can make sure this never happens if there is a solution is the following: We take
starting from the left the smallest pair of balls and we merge them together. We continue doing so,
until we get one single ball or we can’t merge anymore.

Here’s an example:

HOODOODD-QDODDOD-DODDDD -
OOOV-0OO-OWOR->OBW-®

This is an example of a bottom-up approach. The argumentation of why this is indeed correct will
be presented in the next subtask.

Another idea that at first sight might seem confusing, but is also correct, is the following. Let’s
look at the last merge. That merge has to combine 2 balls with the same values. Even more, we
know that the size of these 2 balls has to be equal to half of the total sum of all the balls. If we can’t
split the balls in 2 sides equal to this half-sum, we can’t merge everything into one. Otherwise, we

.?;‘5' Swiss Olympiad in Informatics
N B

Solutions First Round 2018/2019

can do the same check, for the 2 sides and do so, until we get to the bottom recursively. This is an
example of a top-down approach.

There is however a very important observation we have to make. Since we start with N balls,
which all have the same size, we merge every consecutive pairs of them, essentially dividing the
number of balls by half. Since the new balls we get all have the same size as well, we continue this
process until we either have 1 ball or we can’t divide the total number of balls we currently have by
2. Therefore in order to check if in the end we’ll be left with a single ball or multiple, it's enough to
check if the number of balls in the beginning N is a power of 2 or not. An example solution using
bittricks to check if a number is a power of 2 can be found here:

1 #include <bits/stdc++.h>
2 using namespace std;
3 int main() {

4 int T;

5 cin >> T;

6 for (dint t = 0; t < T; t++) {

7 int N;

8 cin >> N; // Number of balls

9 for (dnt i = 0; i < N; i++) {

10 int bi; // The size of the current ball. In this test case, all sizes are
11 // the same.

12 cin >> bi;

13 }

14 // (N & (N - 1)) is a bit trick to find out if N is a power of 2

15 cout << "Case #" << t << ": " << ((N & (N - 1)) ? "Multiple" : "Single")
16 << "\n";

17 }

18 }

Subtask 3: All to one — Part 2 (20 Points)

This subtask is the same as the second one, except in this case we're given balls with different sizes.
The two ideas we used to solve the second subtask can be applied here as well. Again at each
step we take the smallest 2 balls and we merge them. An example of this solution is:

EOHOOO-EBD@-®®®-®® -6

This is correct because of the following argument: Look at the smallest leftmost ball. If there is
any solution, this ball has to be merged with some other ball. Balls are either merged to the left or
to the right. Because the ball to the left is larger or does not exist (by definition of smallest leftmost),
it has to be merged with the one to the right. We can repeat this argument until there is only a
single ball left.

Because of this, many modifications will still work - it does not need to be the two smallest balls,
it can also be the first two adjacent balls with the same value. A fast solution using this idea uses a
stack, which pushes the sizes from left to right and merges the two top values if they are equal.
Since we access each value only twice - once when we add it to the stack and once when we take
it out to merge it, for a total number of 2N times, the running time of this solution is O(N). An
example of this solution can be found here:

Task mergeball

1 #include <bits/stdc++.h>
2 using namespace std;
3 int main(Q) {

4 int T;

5 cin >> T;

6 for (int t = 0; t < T; t++) {

7 int N;

8 cin >> N;

9 stack<int> st; // A stack to store the ball sizes

10 for (int i = 0; i < N; i++) {

11 int bi;

12 cin >> bi;

13 // Check if the previous ball had the same size. We continue doing so,
14 // until we can't

15 while (st.size() >= 1 && st.top() == bi) {

16 st.popQ); // If yes, we merge it with the current ball and remove the
17 // previous

18 bi *= 2;

19 }

20 st.push(bi);

21 }

22 // If there is only 1 ball in the stack, we successfully merged everything
23 cout << "Case #" << t << ": " << (st.size() == 1 ? "Single" : "Multiple™)
24 << "\n";

25 }

26 }

Subtask 4: To infinity (20 Points)

In this subtask we have balls of the same size, from which we want to find out what sizes can be
reached in the game. The limit here is that we aren’t allowed to make balls bigger than size C.

Let’s say the size of the balls is b;. Since the only way to create new balls is by merging existing
ones with the same size and Stofl has only balls of one size, in the beginning we can create a ball of
size 2 - b;. This ball can only be merged with another one of the same type, creating a ball of size
4-b;etc...

So by just doubling the size at each step and stopping when that value gets bigger than C, we
can find all possible sizes that can be achieved using that ball. We have to be careful and use long
numbers to make sure there won't be an overflow. An example of this solution can be found here:

1 #include <bits/stdc++.h>
2 using namespace std;

3 #define int int64_t

4 signed main() {

5 int T;

6 cin >> T;

7 for (int t = 0; t < T; t++) {

8 int N, C, bi;

9 cin >> N >> C >> bi;

10 vector<int> sizes; // A vector to store the sizes we compute

11 while (bi <= O { // If the new value is bigger than C, we stop
12 sizes.push_back(bi); // We add the size to the rest

13 bi *= 2; // We double it

14 }

Swiss Olympiad in Informatics

Solutions First Round 2018/2019

15 cout << "Case #" << t << ": " << sizes.size();
16 for (int s : sizes)

17 cout << " " << s;

18 cout << "\n";

19 }

20 }

Subtask 5: To infinity and beyond! (20 Points)

This subtask is the same as the fourth one, except here we have many balls of different sizes.

The solution is exactly the same as the previous one, except that we have to pay attention to
the fact that we might achieve the same size by using 2 different balls and we don’t want to count
it twice. The easiest way to do so is by using a set, where we store the values we get during the
computation, which deals with the problem of having the same value twice. An example of this
solution can be found here:

1 #include <bits/stdc++.h>
2 using namespace std;

3 #define int int64_t

4 signed main() {

5 int T;

6 cin >> T;

7 for (dnt t = 0; t < T; t++) {

8 int N, C;

9 cin >> N >> C;

10 set<int> sizes; // A set to store the sizes we compute
11 for (int i = 0; i < N; i++) {

12 int bi;

13 cin >> bi;

14 while (bi <= Q) { // If the new value is bigger than C, we stop
15 sizes.insert(bi); // We add the size to the rest
16 ol F= 2g // We double it

17 }

18 }

19 cout << "Case #" << t << ": " << sizes.size();

20 for (int s : sizes)

21 cout << " " << s;

22 cout << "\n";

23 }

24 }

Task ceremony

2 Ceremony

Given are the heights hy, ..., hy-1 of each building in a row of N skyscrapers. For convenience’s
sake, let us say that if x < y, then the x'" building is to the west or on the left of the y" building,
and, similarly, that if x > v, then the x" building is to the east or on the right of the ¥ building.

Forevery 0 < i,j < N, fireworks launched from the top of the i building are visible from the top
of the j building if and only if both i # j and ki < I for every k such that min(i, j) < k < max(i,).
In that case, we say that the j" building offers an ideal view on the i building, or that it is ideal
for the i building.

In the three first subtasks, you're given some i and you have to determine how many buildings
are ideal for the ih building. In the two last subtasks, your task is to compute the maximal number
of ideal buildings if one chooses i optimally.

Subtask 1: Launch the fireworks from the westmost building (10 points)

In this first subtask, the fireworks were always launched from the 0" building and you had to
compute from how many buildings they were visible. The limits were still quite low (1 < N < 100),
so it was possible to test the visibility from every other building using the definition of visibility
presented above without any further trick. For the j building, one just needs to check for every k
such that 0 < k < j whether /i < ;. If there is some case in which this inequality does not hold,

then the j' building is not ideal for the i*" building. This approach would result into the following
code:

1 #include <bits/stdc++.h>

2 using namespace std;

3 int main() {

4 int T; cin >> T;

5 for (int t = 0; t < T; t++) {

6 int N, i; cin >> N >> i; // note that i = 0
7 vector<int> h(N);

8 for (int j = 0; j < N; j++)

9 cin >> h[j];

10 int result = 0;

11 for (int j = 1; j < N; j++) {

12 bool visible = true;

13 for (int k = 1; k < j; k++)

14 if Ch[k] >= h[j]) // i. e. if it is not the case that h[k] < h[j]
15 visible = false;

16 if (visible)

17 result++;

18 }

19 cout << "Case #" << t << ": " << result << '"\n';
20 }

21 }

— _22 _2 2_
Overall, we perform YN 2k = (N)2+N = N3N+

computes the solution to any testcase in O(N?).

comparisons. Therefore, the program

Swiss Olympiad in Informatics

Solutions First Round 2018/2019

Subtask 2: More available buildings (20 points)

This subtask was the same as the first one, except that N could be a lot larger: the limits were
1 < N <£71°000°000. Our previous program was therefore too slow to compute the solution whithin
the time limit of 5 minutes.

The key observation is the following: we were comparing a lot of values that we did not need to
compare. For example, let us consider an input with heights 8, 3, 5, 12, 4, and 13. When we want to
check whether the last building is ideal for the oth building, we test four inequalities: 3 < 13,5 < 13,
12 <13 and 4 < 13. It is evident that if the third of these inequalities holds, all of the others do as
well. For example, if 12 < 13, then clearly 3 < 13, because 3 < 12 and 12 < 13 ("being less than" is a
transitive relation). More generally, one only needs to check whether maxg<x<j(hx) < h;.
Moreover, if one goes through the buildings from left to right, it is easy to keep track of the heighest
building met so far on the go, so that one can always compute whether the next building is ideal in
constant time. This code would be an implementation of that idea:

1 #include <bits/stdc++.h>

2 using namespace std;

3 int main(Q) {

4 int T; cin >> T;

5 for (int t = 0; t < T; t++) {

6 int N, i; cin >> N >> i; // note that i = 0
7 vector<int> h(N);

8 for (int j = 0; j < N; j++)

9 cin >> h[j];

10 int result = 0, maxSoFar = 0;

11 for (int j = 1; j < N; j++) {

12 if (maxSoFar < h[j])

13 result++;

14 maxSoFar = max(maxSoFar, h[j]);

15 }

16 cout << "Case #" << t << ": " << result << '\n';
17 }

18 }

With that improvement, we get our runtime down to O(N).

Subtask 3: Launching from another building (20 points)

In this subtask, the limits are the same as in the second one, but i, the index of the building from
which the fireworks are launched, can vary. Simply reusing our previous solution but starting with
the (i + 1) building would clearly not be enough, because one would not ever look at buildings on
the left of the ih building. However, we can apply the same principles to extend our solution with
another loop checking for each building on the left of the it building whether it is ideal for that
building. Here is an example of how one would do that:

1 #include <bits/stdc++.h>

2 using namespace std;

3 int main() {

4 int T; cin >> T;

5 for (int t = 0; t < T; t++) {

6 int N, i; cin >> N >> i; // i is not always 0 anymore

Task ceremony

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

24 }

vector<int> h(N);
for (int j = 0; j < N; j++)
cin >> h[j];
int result = 0, maxSoFar = 0;
for (int j =i + 1; j < N; j++) { // right side
if (maxSoFar < h[j])
result++;
maxSoFar = max(maxSoFar, h[j]);
}
maxSoFar = 0;
for (int j =i - 1; j >=0; j--) { // left side
if (maxSoFar < h[j])

result++;
maxSoFar = max(maxSoFar, h[j]);
}
cout << "Case #" << t << ": " << result << '"\n';

In total, we look at the visibility of N — 1 buildings, and for every one of these, we only need a

constant time to compute whether they are visible. Therefore, our runtime is still O(N).

Subtask 4: Find the building with optimal visibility (10 points)

Now the problem is slightly different: you are not given some i as in the previous subtasks, but
you are required to find the optimal number of buildings from which the fireworks are visible if i
is chosen optimally, that is, you need to find the maximal solution among the solutions for every
possible value of i.
In this fourth subtask, the limits are low again: 1 < N < 100. That means that we can still use
a similar solution to that of the third subtask, but checking the solution for every i such that
0 <i < N and taking the maximum of these N values. The modification is quite simple and could
be implemented in the following manner:

1 #include <bits/stdc++.h>
2 using namespace std;
3 int main(Q) {

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

int T; cin >> T;
for (int t = 0; t < T; t++) {

int N; cin >> N; // there is no given i anymore
vector<int> h(N);
for (int j = 0; j < N; j++)
cin >> h[j];
int bestResult = 0;
for (dnt i = 0; 1 < N; i++) {
int result = 0, maxSoFar = 0;
for (int j =i + 1; j < N; j++) { // right side
if (maxSoFar < h[j])
result++;
maxSoFar = max(maxSoFar, h[j]);
}
maxSoFar = 0;
for (int j =i - 1; j >= 0; j--) { // left side
if (maxSoFar < h[j])

:ﬁlﬁ_ Swiss Olympiad in Informatics
. A -

Solutions First Round 2018/2019

21 result++;

2 maxSoFar = max(maxSoFar, h[j]);

23 }

24 bestResult = max(bestResult, result);

25 }

26 cout << "Case #" << t << ": " << bestResult << '\n';
27 }

28 }

Since we need O(N) time to compute each of the N partial solutions, we get a runtime in O(N?).

Subtask 5: Find the building with optimal visibility with many buildings
(40 points)

This final subtask was the trickiest: with the higher limit on N (1 < N < 1’000°000), one needed a
good idea to get under the time limit.

The idea was the following: if one knows which buildings on the left of the k' building offer an
ideal view of it, then it is easy to compute which buildings on the left of the (k + 1)th building offer
an ideal view of it. The heights of the buildings on the left of the k' building that are ideal for it
make up a strictly decreasing sequence (for it is a direct consequence of the definition of visibility
that if this sequence was not strictly decreasing, then some of the buildings therein would not be
ideal). The ideal buildings on the left of the (k + 1)th building are then the same as those on the left
of the k' one, without the buildings that were ideal for the k' building but are not for the (k + 1)t
building because their height is smaller than h, and with the addition of the k" building itself.
But the buildings that we have to remove are always a suffix of the sequence of the ideal buildings
on the left of the k' building, because of the fact that this sequence is strictly decreasing. In other
words, we can remove the last element of that sequence, and then the next one and so on, until we
meet a building whose height is greater than hix or we reach the end of the sequence. At that point,
we get a new sequence with all the buildings on the left of the (k + 1)th building offering an ideal
view of it, and we can later use that sequence to compute the sequence of all the buildings offering
an ideal view from the left of the (k + 2)™ building, and so on until we reach the last building.
We also know that no building on the left of the first building offers an ideal view of fireworks
launched from the first building, because there is no building on the left of the first building.

By maintaining such a sequence (which is more easily represented by a stack) by starting from
the leftmost building and iterating through all buildings from left to right, we can find the number
of buildings on the left of every building offering an ideal view of fireworks launched from the top
of that building. The procedure would go as follows:

1. We create an empty stack S.

2. We start considering the 0 building. S contains all the buildings left of the 0" which offer
an ideal view of fireworks launched from the 0" building.

3. S’s size is 0, so we memorize that 0 is the number of ideal buildings on the left of the oth
building.

4. The 0™ building is taller than no element in S, so we don’t remove anything from S, and we
add the 0" building to the stack.

(We continue by considering the next buildings)

10

Task ceremony

5. We're now considering the i" building. S contains all the buildings left of the it" which offer
an ideal view of fireworks launched from the i*! building.

6. S’s size is now X, so we memorize that X is the number of ideal buildings on the left of the
i" building.

7. The i building is of at least the same height as the first Y items on top of S, so we remove
these from S, and we add the i*" building on top of S.

(We continue by considering the next buildings)

8. We’ve now found the number of ideal buildings on the left of the (N — 1)th building, so we
can stop.

It is possible to implement a similar process to compute the number of buildings offering an ideal
view from the right of any building. Then, after we have computed both the number of ideal
buildings on the left and on the right of some building, we know that the sum of these two numbers
is the number of buildings offering an ideal view on fireworks launched from the top of that
building. Hence, to get the overall solution, it suffices to iterate through every i between 0 and
N -1 and remember what the maximal solution was among all of these.

Here is some code implementing this algorithm:

1 #include <bits/stdc++.h>

2 using namespace std;

3 int main() {

4 int T; cin >> T;

5 for (int t = 0; t < T; t++) {

6 int N, result = 0; cin >> N;

7 vector<int> h(N), left(N), right(N);
8 stack<int> leftStack, rightStack;

9 for (int j = 0; j < N; j++)

10 cin >> h[j];

11 for (int i = 0; i < N; i++) { // ideal buildings on the left
12 left[i] = leftStack.size();

13 while (!leftStack.empty() && h[i] >= leftStack.top())

14 leftStack.pop(Q);

15 leftStack.push(h[i]);

16 }

17 for (int i = N - 1; i >= 0; i--) { // ideal buildings on the right
18 right[i] = rightStack.size();

19 while (!rightStack.empty() && h[i] >= rightStack.top())

20 rightStack.pop(Q);

21 rightStack.push(h[i]);

22 }

23 for (int 1 = 0; i < N; i++) { // find optimal value

24 result = max(result, left[i] + right[i]);

25 }

26 cout << "Case #" << t << ": " << result << '"\n';

27 }

28 }

The runtime analysis of this algorithm is a little bit more complicated than for the earlier subtasks,
because it is at first glance unclear how much time the inner loops on the 13" and 19" lines need.
The key observation is that every building will be added once to each queue and removed at most
once from each queue. Overall, our solution runs in O(N).

11

d{; Swiss Olympiad in Informatics
N B

Solutions First Round 2018/2019

3 Touristtrap

Given is a rectangular map and a starting spot, your task is to determine whether or not it is possible
to reach any of the border tiles from the starting point.

The four different subtasks had differing representations of the map and increasing limits on
map complexity and size.

Subtask 1: ASCII map (20 points)

In the first subtask the map is represented as a grid where each tile is either accessible (_) or not (#).
This case can be solved by starting a depth-first-search (https://soi.ch/wiki/dfs/) from Mouse
Stofl’s starting tile on the graph where each tile is connected to it’s four neighboring tiles if they are
accessible. If the DFS visits any border tiles, it’s possible to escape, otherwise not. Since for a graph
with N nodes and M edges DFS runs in O(N + M) time, and we have one node for each accessible
tile and at most four edges for each tile, the solution runs in O(WH).

1 #include <bits/stdc++.h>
2 using namespace std;

4

5 signed main() {

6 int T; cin >> T;

7 for(int t=0; t<T; ++t) {

8 int w, h, x, y; cin >> w >> h >> x >> y;

9 vector<string> map;

10 copy_n(istream_iterator<string>(cin), h, back_inserter(map));
11 cout << "Case #" << t << ": "

12 vector<array<int,2>> stack={{x,y}};

13 bool poss = false;

14 while(!stack.empty()) {

15 auto pos = stack.back(); stack.pop_back(Q);

16 if (pos[0]<0® || pos[0]>=w || pos[1]<® || pos[1]>=h)
17 continue;

18 if (map[pos[1]][pos[0]] != '_")

19 continue;

20 if (pos[0]==0]|pos[1]==0] |pos[0]==w-1]| |pos[1]==h-1) {
21 poss = true;

2 break;

23 3

24 map[pos[1]1]1[pos[0]] = '.";

25 stack.push_back({pos[0]-1,pos[1]1});

26 stack.push_back({pos[0]+1,pos[1]});

27 stack.push_back({pos[0],pos[1]-1});

28 stack.push_back({pos[0],pos[1]+1});

29 }

30 cout << ("IMPOSSIBLE\n'"+2*poss);

31 }

32 }

12

Task touristtrap

Subtask 2: Vector map (20 points)

In this subtask, the map is now given as a list of rectangles, whose contained tiles should be
considered accessible. Since the limits on the size is still there, any solution for Subtask 1 should sill
work, we just need to convert to the old format. We can start with a grid filled with # characters and
fill each rectangle with _ characters. This will take O(RWH) time in the worst case (most rectangle
covering most of the grid). The test data didn’t contain many cases with large-area rectangles, but
even in the worst case the code is fast enough for R < 1000 because constants are very small.

1 #include <bits/stdc++.h>
2 using namespace std;
3

4

5 signed main() {

6 int T; cin >> T;

7 for(int t=0; t<T; ++t) {

8 int w, h, x, y, r; cin >> w >> h >> x >> y >> r;

9 vector<string> map(h,string(w, '#'));

10 for(int i=0; i<r; ++1i) {

11 int w, h, x, y; cin >> x >> y >> w >> h;
12 for_each(map.begin()+y, map.begin()+y+h, [x,w](auto &row) {
13 fill _n(row.begin(Q+x, w, '_");

14 ;

15 }

16 cout << "Case #" << t << ": ";

17 vector<array<int,2>> stack={{x,y}};

18 bool poss = false;

19 while(!stack.empty()) {

20 auto pos = stack.back(); stack.pop_back(Q);
21 if (pos[0]1<0 || pos[0]>=w || pos[1]<® || pos[1]>=h)
22 continue;

23 if (map[pos[1]][pos[0]] != '_")

24 continue;

25 if (pos[0]==0| |pos[1]==0]| |pos[0]==w-1| |pos[1]==h-1) {
2 poss = true;

27 break;

28 }

29 map[pos[1]][pos[0]] = '.";

30 stack.push_back({pos[0]-1,pos[1]1});

31 stack.push_back({pos[0]+1,pos[1]});

32 stack.push_back({pos[0],pos[1]-1});

33 stack.push_back({pos[0],pos[1]+1});

34 }

35 cout << ("IMPOSSIBLE\n"+2*poss);

36 }

37 }

Subtask 3: Bigger map (30 points)

Now that we don’t have a significant restriction on W and H (up to 10°), our O(WH) algorithm
won't be fast enough.

We notice that any two tiles within the same rectangle are connected (possibly with some
intermediate tiles). Because of the transitivity property of connectivity (if both tiles A and B

13

d{; Swiss Olympiad in Informatics
N B

Solutions First Round 2018/2019

and tiles B and C are connected, A is also connected to C), if any two tiles of two rectangles are
connected, all tiles in the rectangles are connected. Because are tiles inside a rectangle have the
same connectivity, we can simplify our graph to only have one node for each rectangle. Now we
just need a good way to figure out if two rectangles are connected.

We havet to consider four cases for a pair of rectangles:

Image | Description of extents Connected?
|:| Disjoint in at least one dimension X
]

D Intersecting in both dimensions. v
I:D Intersecting in one and touching in one dimension v
I:‘] Only touching in both dimensions X

We can then create a node for each rectangle, and check every pair of rectangles to add an edge if
they are connected. We then run DFS on this graph, starting from the rectangle containing Mouse
Stofl’s starting point (any of them if there are several). If we visit any rectangle that touches the
border, we have an escape route, otherwise not.

Checking connectivity between rectangles is a constant-time operation, so we spend O(R?)
time on generating the graph. The DFS also takes at most O(R?) to run in the worst case (many
connections), giving a total running time of O(R?).

1 #include <bits/stdc++.h>

2 using namespace std;

3

4 typedef array<int, 4> int4;
5

6 namespace std {

7 istream& operator>>(istream& stream, int4 &r) {

8 return stream >> r[0] >> r[1] >> r[2] >> r[3];
9 }

10 }

11

12 int connectivity(int xs, int xe, int ys, int ye) {

13 if (xs > ye || ys > xe)

14 return 0;

15 if (xs == ye || ys == xe)

16 return 1;

17 return 2;

18 }

19 bool connected(int4 &a, int4 &b) {

20 return connectivity(a[0], a[0]+a[2], b[0], b[0]+b[2])
21 + connectivity(a[l], a[1]+a[3], b[1], b[1]+b[3]) > 2;
2 }

23 bool has(int4 &a, int x, int y) {

24 return af[0] <= x && x <= a[0]+a[2]

25 && all] <=y && y <= a[l]+a[3];

14

Task touristtrap

2 }

27 bool border(int4 &a, int w, int h) {

28 return af[0] == 0 || a[l1] == 0 || a[0]+a[2] == w || a[l]+a[3] == h;
29 }

30

31 signed main() {

32 int T; cin >> T;

33 for(int t=0; t<T; ++t) {

34 int w, h, x, y, r, s; cin >> w >> h >> x >> y >> r;
35 vector<int4> rects;

36 copy_n(istream_iterator<int4>(cin), r, back_inserter(rects));
37

38 vector<vector<int> >g(r);

39 for (dint 1 = 0; i < r; ++i) {

40 if Chas(rects[i], x, y¥))

41 s =i

) for (int j = 0; j < i; ++3) {

43 if (connected(rects[i], rects[j])) {
44 g[i].push_back(j);

45 g[j].push_back(i);

16 }

47 }

48 }

49

50 cout << "Case #" << t << ": 'y

51 vector<int> stack={s};

52 vector<bool> vis(r,false);

53 bool poss = false;

54 while(!stack.empty()) {

55 int pos = stack.back(); stack.pop_back(Q);
56 if (vis[pos])

57 continue;

58 vis[pos] = true;

59 if (border(rects[pos], w, h)) {

60 poss = true;

61 break;

62 }

63 copy(g[pos].begin(), g[pos].end(), back_inserter(stack));
64 }

65 cout << ("IMPOSSIBLE\n"+2*poss);

66 }

67 }

Subtask 4: Even bigger map (30 points)

For this subtask, we need a solution that runs in O(n log n) in the worst case. Even if we have a
smarter way of finding connecting rectangles, we can still have up to O(R?) connections (consider
many long vertical and horizontal rectangles).

Dealing with rectangles touching only at corners

We first deal with rectangles that touch only a a corner. If we replace [a, b] X [c, d] by the “cross”
[3a,3b] X [3¢ +1,3d —1] U [3a +1,3b — 1] X [3¢, 3d], then two rectangles are connected if and only
if the corresponding crosses touch or intersect. We also note that two crosses never touch only at a

15

:Flﬁ. Swiss Olympiad in Informatics
S Solutions First Round 2018/2019

corner, so this transformation got rid of that special case.

An elementary O(n log 1) solution

We perform scanline on x and use a union-find datastructure to store the components of rectangles
based on all intersection to the left of the sweepline. We mantains two sets of pairs (y-coordinates,
rectangle-id):

e The set S stores the lower and upper coordinate of every rectangle that intersects the sweepline.

e The set T stores all elements of S that are in a different component than their predecessor in S
or in a different component than their successor in S.

e Whenever we insert or delete something in S, we need to check whether its predecessor or
successor needs to be added to or removed from T.

The intuitive idea behind the second set is the following: If many adjacent y-coordinates by, . . ., b
belong to the same component, then a new rectangle [y, y2] that intersects some of them is either
fully contained in [b1, bi], or it contains b; or by.

At the current x-position, we first process add all rectangles that start here and then we remove
all rectangles that end here. To add a rectangle R with y-range [y1, y2], we do the following.

1. We first seek to find all components that R intersects. Let A be the set of all coordinates in T
that are in [y, y2]. We unite the R with all elements of A. Next, we remove all but the first
and last element of A from T. This removal step makes the solution fast, as whenever we
need a lot of time, there are a lot of elements in A, so also remove a lot of elements from T.
Finally, we check whether we need to remove the first and last elements of A from T.

2. Ifin the first step, A was empty, the we're in the special case where all elements of S in [y1, y2]
belong to the same component. In this case, we just unite A with any element of S in [y1, y2].

3. Insert y; and y; into S (and then as always check if we need to add / remove elements to /
from T).

To remove a rectangle, simply remove its endpoints from S and T.

After the scanline, we know how the connected components of the rectangles look like, so we
just iterate over all components and check if they contain both the starting point and a rectangle
touching the border.

Note that this solutions uses only requires some scanline with “std::set”. No fancy datastructes
are used here.

Runtime analysis

This solution runs in O(r log r). Sorting the events and the union-find take ©(r log r) time. The
2r insert and remove operations perfomed on S take O(log r) time each, so that’s also fine. The
non-obvious part is that mainting the set T takes O(r log r) time.

We first note, that T can be efficiently updated when we insert or erase some element from S, as
we only check if the predecessor and successor should belong to T, so we insert or remove at most
two elements from T. Hence this doesn’t increase the asymptotic runtime.

What remains to show is that the first step when adding a rectangle is fast. Finding the set A
and removing its interior elements from T takes O(log r + |A|) time. While |A| might be large, we

16

Task touristtrap

then also remove |A| — 2 elements from T. As all other steps run in @(r log r) time, we add at most
that many elements to T, so we can also remove at most that many elements from T. Hence the
combined size of all A is at most O(r log r) and this part is also fast.

1 #include <bits/stdc++.h>
2 using namespace std;

3

4 using 11 = int64_t;

5 constexpr int inf = 1e9;
6

7 struct Rectangle{

8 11 x1, x2, yl, y2;

9 int id;

10 bool contains(ll x, 11 y) const {

11 return x1 <= x && x < x2 & yl <=y && y < y2;
12 }

13 bool touches_border(ll w, 11 h) const {

14 return x1 == 0 || y1 == 0 || x2 == w || y2 == h;
15 }

16 };

17 struct Event{

18 11 x;

19 11 y1, y2;

20 int id;

21 bool is_deletion;

2 bool operator<(Event const&o) const {

23 return make_pair(x, is_deletion) < make_pair(o.x, o.is_deletion);
24 }

25 };

26 struct Union_Find{

27 vector<int> p;

28 Union_Find(int n) : p(n) {

29 iota(p.begin(), p.end(), 0);

30 }

31 int f(int x){

32 return p[x] ==x ? x : p[x] = f(p[x]);

33 }

34 void u(int a, int b){

35 plf(@] = £(b);

36 }

37 };

39 signed main(){

40 int T;

41 cin >> T;

42 for(int cas=0; cas<T; ++cas){

43 cout << "Case #" << cas << ": ";
44 int r;

45 11 w, H, X, Y;

46 cin >> W >> H >> X >> Y >> r;

47 vector<Rectangle> recs;

48 // read rectangles and transform them into crosses
49 for(int i=0;i<r;++i){

50 11 x1, y1, x2, y2, w, h;

51 cin >> x1 >> yl >> w >> h;

17

Swiss Olympiad in Informatics

Solutions First Round 2018/2019

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

18

X2 = x1+w;
y2 = yl+h;
recs.push_back(Rectangle{3*x1+1, 3*x2-1, 3*yl, 3*y2, i});
recs.push_back(Rectangle{3*x1, 3*x2, 3*yl+l, 3*y2-1, i});
}
// also transform grid
X=3*X+1; Y=3*Y+1; W*=3; H*=3;
// compute events
vector<Event> evs;
for(auto const&rec:recs){
// insertion event
evs.push_back(Event{rec.x1l, rec.yl, rec.y2, rec.id, false});
// deletion event
evs.push_back(Event{rec.x2, rec.yl, rec.y2, rec.id, true});
}
sort(evs.begin(), evs.end());
// set up datastructures
set<pair<ll, int> > S, T;
Union_Find uni(r);
auto should_be_in_T = [&](set<pair<ll, int> >::iterator it){
// check if first or last
if(it == S.begin()) return true;
auto it2 = next(it);
if(it2 == S.end()); return true;
// check if successor is in different component
if(uni.f(it2->second) !'= uni.f(it->second)) return true;
// check if predecessor is in different component
auto it3 = prev(it);
if(uni.f(it3->second) != uni.f(it->second)) return true;
i
auto update_in_T = [&](set<pair<ll, int> >::iterator it){
if(should_be_in_T(it)){
T.insert(*it);
} else {
T.erase(*it);
}
13
auto check_pred_succ = [&](pair<ll, int> const&p){
auto it_suc = S.upper_bound(p);
if(it_suc != S.end()) update_in_T(it_suc);
auto it = S.lower_bound(p);
if(it != S.begin()) update_in_T(prev(it));

b

auto remove_point = [&](pair<ll, int> consté&p){
S.erase(p);
T.erase(p);
check_pred_succ(p);

};

auto add_point = [&](pair<ll, int> const&p){
auto it = S.insert(p).first;
update_in_T(it);
check_pred_succ(p);

};

// scanline

for(auto const&ev:evs){
if(ev.is_deletion){

Task touristtrap

108 remove_point (make_pair(ev.yl, ev.id));

109 remove_point (make_pair(ev.y2, ev.id));

110 } else { // insertion

111 auto it_1 = T.lower_bound(make_pair(ev.yl, -inf)), it_r =

— T.upper_bound(make_pair(ev.y2, inf));

112 // The set A of intersections is now [it_1, ..., prev(it_r)]

113 if(it_ 1l == it_r){

114 // special case: [yl, y2] is inside endpoints belonging to the same
<> component

115 // find the <=1 component [yl, y2] intersects

116 auto it = S.lower_bound(make_pair(ev.yl, -inf));

117 if(it !'= S.end() && it->first <= ev.y2){

118 uni.u(it->second, ev.id);

119 }

120 } else {

121 // unite with elements in A

122 for(auto it = it_1l;it != it_r;++it){

123 uni.u(it->second, ev.id);

124 }

125 // remove elements in the interior of A

126 auto erase_l = next(it_l), erase_r = prev(it_r);

127 if(erase_1 != it_r){ // don't erase if A has size 1

128 T.erase(erase_l, erase_r);

129 // check if first and last element of A still belong into T

130 update_in_T(S.find(*it_1));

131 update_in_T(S.find(*erase_r));

132 }

133 }

134 add_point (make_pair(ev.yl, ev.id));

135 add_point (make_pair(ev.y2, ev.id));

136 }

137 }

138 // check if a component contains (X, Y) and touches the border.

139 vector<bool> contains(r,0), touches(r, 0);

140 for(auto &e:recs){

141 if(e.contains(X, Y)) contains[uni.f(e.id)] = true;

142 if(e.touches_border (W, H)) touches[uni.f(e.id)] = true;

143 }

144 bool can_escape = false;

145 for(int i=0;i<r;++i){

146 if(contains[i] && touches[i]) can_escape = true;

147 }

148 if(can_escape){

149 cout << "POSSIBLE\n";

150 } else {

151 cout << "IMPOSSIBLE\n";

152 }

153 }

154 }

19

* < Swiss Olympiad in Informatics

Solutions First Round 2018/2019

4 Pipeline

Given are N spots to place pumps (x¢ < x1 < --- < xn-1). For any subset of points including the
start and the end, that is all {x;,, xi,, ..., xi, } with 0 = ip < i1 <...ip = N — 1), we define the LTC

as the maximum distance between any two adjacent points distance, i.e. LTC = o nax 2{xi i~ Xit
<j<P-

The three subtasks were:

1. Find the minimal P for a fixed LTC.
2. Find the minimal LTC for a fixed P.

3. Find the minimal P for all LTC € {1,2,..., M} with an algorithm that has minimal space
usage.

Subtask 1: Fixed LTC (15 points)

To find the minimal number of pumps for a fixed LTC, we do the following algorithm: Go from left
to right and only take those pumps that are absolutely necessary. A pump is necessary if taking the
next pump has a distance larger than LTC from the previous pump that has been taken.

An algorithm that solves a problem by making locally optimal decision is called greedy. In this
case, we take the optimal pump location at each step, ignoring the possible spots after that point
or before the last station that was taken. While this gives us the best solution locally, it does not
necessarily give us a globally optimal solution. A proof of why this is indeed correct for this task is
given in the last subtask.

1 #include <bits/stdc++.h>

2 using namespace std;

3

4 vector<int> greedy(int ltc, vector<int> const& xs) {

5 vector<int> take = { xs[0] }; // always take the first

6 int x_prev = xs[0];

7 for (auto x : xs) {

8 if (x - take.back() > 1ltc)

9 take.push_back(x_prev); // gap too large, need to take the last one

10 if (x - take.back() > 1ltc)

11 return {}; // impossible to cover, return empty vector

12 X_prev = X;

13 }

14 if (x_prev != take.back()) // take the last, if not already taken
15 take.push_back(x_prev);

16 return take;

17 }

19 int main() {
20 int t; cin >> t;
21 for (int tc=0; tc<t; ++tc) {

2 int n, ltc; cin >> n >> ltc;

23 vector<int> xs;

24 copy_n(istream_iterator<int>(cin), n, back_inserter(xs));
25 cout << "Case #" << tc << ": ";

26 auto answer = greedy(ltc, xs);

20

Task pipeline

27 if (answer.empty())

28 cout << "Impossible";

29 else if (answer.size() > 9000)

30 cout << answer.size();

31 else

32 copy(answer.begin(), answer.end(), ostream_iterator<int>(cout<<answer.size(Q<<' ', " "));
33 cout << '"\n';

34 }
35 }

Subtask 2: Fixed Pumps Count (15 points)

This time we want to minimize the LTC given a fixed number of pumps. The key idea was to not
construct the solution directly, but to use the algorithm of the previous subtask.

Say we want to use 4 pumps. We can run the previous algorithm for multiple values of LTC, for
example:

e Solve with LTC =1 ~~ impossible
e Solve with LTC = 2 ~~ impossible
e Solve with LTC =3~ P =9

e Solve withLTC=4~~P =6

e Solve with LTC=5~+ P =5

e Solve with LTC=6~» P =4

e Solve with LTC =7 ~» P =3

e Solve withLTC=8~» P =3

e Solve with LTC =9 ~» P =3

e Solve with LTC > 10~ P =2

And then we see that we can get an LTC of 6 using exactly 4 pumps. A smaller LTC, say LTC=5
requires at least 5 pumps.

What if we have P = 3 pumps? Because we want to minimize the LTC, we take the smallest, in
this case LTC=7. Also what if we have P = 7 pumps? We can’t ever select spots with an LTC of 3, so
we have to do an LTC=4 with 6 pumps. As we're required by the task description to actually use 7
pumps, we just add another pump that has been previously unused.

In general, the algorithm would be to take the smallest LTC that uses at most P pumps and then
fill up with remaining pumps until it uses exactly P pumps.

If we were to code just that, trying all possible LTC’s until we’re good is too slow. However, we
can do it smarter. We notice that the values of the P are decreasing when the LTC is increasing. This
allows us to make use of binary search: We start with some value, say LTC = 6. If we use at least P
pumps, we decrease it, say to LTC = 3. If we use less than P pumps, we increase it, say to LTC = 12.

More formally, we have two variables: [(for left) and r (for right). Those two variables define our
search range {I + 1,/ +2,...,r} (meaning we know that the optimal LTC lies in this range) and
satisfy the following conditions:

o if we have LTC =/, it’s either impossible or we need > P pumps

21

,,f' Swiss Olympiad in Informatics
&%’ Solutions First Round 2018/2019

o if we have LTC =7, its possible and we need < P pumps

Initially, we set I = 0 (then it’s never possible) and r = xy-1 — x((then we only need 2 pumps). We
then take a value in the middle, m = L”Trj. We check what happens with LTC = m. If it's possible
and we need less than P pumps, we set the variable r to m. If not, it’s either impossible or we need
at least P pumps, so we can set [to m. Note that our search range decreased from r — [to [— m or
r —m and in both cases it has been halved. So if originally we had I = 0 and r = 2%%, we need exactly
30 steps to have r = [+ 1. In this case, we have found our optimal LTC of r. As the distance between
the last and the first pump station are at most 10° < 23%, we will use at most [log, 10°] = 30 steps.
So this algorithm runs in O(n log C) (where C = xn-1 — X0).

Note that the initial values as given above are incorrect for N = 1. In this case, solving it with
I = 0 is always possible. We can fix that by starting with I = —1.

There are many ways to “fill up” the remaining pumps. One is to put all pump locations selected
by the greedy algorithm in a std: :set<int> and insert values until its size is P. A set keeps each
value only once, so this works and the running time would be O(n log(max 1, C)) is fast because
inserting into a set is logarithmic time and we do it at most n times.

Another way to do it is to make use of the fact that the values are already sorted, so we can
compute the unused values in linear time and then take as many of them as we need. The function
set_difference computes the difference between two sorted lists (A \ B = {x € A|x ¢ B}) and the
function inplace_merge sorts a list that consists of two sorted halves. Doing it this way gets rid of
a log-factor in the last step. The total running time thus is O(n log C).

vector<int> greedy(int ltc, vector<int> const& xs) {
... // same as in previous subtask

}

// invariant:
// - impossible with <=max_pumps and LTC=left
// - possible with <=max_pumps and LTC=right
int left=-1, right=xs.back() - xs.front();

10 while (right - left > 1) {

1
2
3
4
5 pair<int, vector<int>> binary_search(size_t max_pumps, vector<int> const& xs) {
6
7
8
9

11 int mid = (left + right)/2;

12 auto ans = greedy(mid, xs);

13 if (ans.empty() || ans.size() > max_pumps)
14 left = mid; // impossible

15 else

16 right = mid; // possible

17}

18 auto take = greedy(right, xs);

19 vector<int> unused;

20 set_difference(xs.begin(), xs.end(), take.begin(), take.end(), back_inserter(unused));
21 int necessary = take.size();

22 copy_n(unused.begin(), max_pumps - necessary, back_inserter(take));

23 inplace_merge(take.begin(), take.begin() + necessary, take.end());

24 return {right, take};

25 }

27 int main() {

28 int t; cin >> t;

29 for (int tc=0; tc<t; ++tc) {
30 int n, p; cin >> n >> p;

22

Task pipeline

31 vector<int> xs;

32 copy_n(istream_iterator<int>(cin), n, back_inserter(xs));
33 auto [ltc, answer] = binary_search(p, xs);

34 cout << "Case #" << tc << ": " << 1tc << '"\n';

35 if (answer.size() <= 9000)

36 copy(answer.begin(), answer.end(), ostream_iterator<int>(cout << '\n', " "));
37 else

38 cout << "Over 9000";

39 cout << '\n';

40 }

4 3}

Subtask 3: Walking down the BTC (10 points)

To find the minimal P for all LTC € {1, 2, ..., M}, it was enough to run the solution of subtask 1 all
different values of LTC. The goal of this task was to prepare for the last subtask.

Subtask 4: Walking down the ETH in O(N - M) (20/60 points)

This section shows the intended solution for 20 out of 60 points. We will look at the solution that
score more than that in the following section. We structure the proof as follows. First, we show that
greedy works and is indeed correct. Then, we start with the trivial solution that runs greedy on all
values and transform he solution into another one that computes the same results but uses less
memory.

So, why does greedy work? Looking again at the source code for subtask 1:

1 vector<int> greedy(int ltc, vector<int> const& xs) {

2 vector<int> take = { xs[0] }; // always take the first

3 int x_prev = xs[0];

4 for (auto : xs) {

5 if (x - take.back() > 1ltc)

6 take.push_back(x_prev); // gap too large, need to take the last one
7 if (x - take.back() > 1ltc)

8 return {}; // impossible to cover, return empty vector

9 X_prev = X;

10 }

11 if (x_prev != take.back()) // take the last, if not already taken
12 take.push_back(x_prev);

13 return take;

14 }

The idea was to always select the last pump station we can take without violating the LTC. By
construction, we always take the first and the last element and if we find a solution, we always find
one that is viable (not violating any of the constraints). What remains to be shown is that what we
select is optimal, meaning it has the minimal number of pump stations.

As with many greedy algorithm, we can do a proof by contradiction followed by an exchange argu-
ment. Consider an arbitrary input. Our algorithm will produce the solution A = {ag, a1, ...,ap-1}.
Look at an optimal solution O = {0y, 01, ..., 00-1}. Assume that this other solution is better than
ours, that is Q < P. Without loss of generality, let’s further assume that in case there are multiple
optimal solutions, we take the one that agrees with ours on the longest possible prefix. In other
words take that O such that there is an k where both mismatch (a; = 0; for 0 < i < ¢ and ax # 0x)

23

,,f' Swiss Olympiad in Informatics
&%’ Solutions First Round 2018/2019

and this k is maximal. Such an k always exists because the last element of both solutions must be
equal (as it was required by the task statement that start and end are in there) and as they have
different length, they must differ at some element. Furthermore, we have 2 < k < Q because the
start is the same in both elements.

Now, by construction of A, we must have ay > or. Why? Firstly, a; is not the last element
(ar # xn-1) because only ag_1 can be equal to xy_1 and we know that Q < P. So we can only
have chosen a; on line 6. The condition on line 5 tells us that the spot following ay is larger than
ak-1 + LTC, so it would be illegal to be chosen. Therefore, ox > ay is impossible (illegal), ox = ai is

impossible (by definition of k), so we must have o < a.

As o # xn-1, we must have k < Q — 1 and thus oy, exists. Now comes the clue: We
construct a new solution O” = {0y, 01, ..., 0k-1, k, Ok+1, - - - , 00—1}. This solution is valid, because
(a) ax — 0x—1 < LTC (because 0x_1 = ax-1), (b) 0x+1 — ax < LTC (because ay > ox), (c) 041 —ax >0
(otherwise, O \ {ox} would be a valid solution and thus O would not be optimal). However,
this solution agrees with A on the first k elements, and a mismatch only happens at k¥’ > k + 1,
contradicting the assumption that k was maximal. We have a contradiction, thus we can only
conclude that such an O can not exist. O

The running time of this solution is clearly O(n) as we iterate through each value exactly once.
Doing this naively for every LTC we end up with the following algorithm:

1 vector<int> serial_greedy(int max_ltc, vector<int> const& xs) {

2 const int INF = 1e9; // sentinel

3 vector<int> last(max_ltc+1, xs[0]);

4 vector<int> need(max_ltc+1, 1);

5 for (int ltc=1; 1ltc <= max_ltc; ++1tc) { // ltc-loop

6 for (int i=0; i<xs.size(); ++i) { // xs-loop

7 if (xs[i] - last[ltc] > 1tc) {

8 last[1ltc] = xs[i-1]; // gap too large, need to take the last one
9 need[ltc] += 1;

10 }

11 if (xs[i] - last[ltc] > 1ltc)

12 need[ltc] = INF; // impossible

13 }

14 if (xs.back() !'= last[ltc]) // take the last, if not already taken
15 need[ltc] += 1;

16 }

17 need.erase(need.begin()); // ltc=0 is uninteresting
18 replace_if(need.begin(), need.end(), []J(int n) { return n >= INF; }, -1);
19 return need;

This code is slightly different to the one shown before in order to prepare for what’s about to
come. We don't return early if we see something is impossible, we set the number of required
pumps to +oo instead. We also store our temporary variables inside the arrays last and need.
Functionally the code remains equivalent after these changes.

The memory required for this solution is O(N + M). We need an array of size N for all values
{x0,...,xNn-1}. We also need two arrays of size M + 1 for our temporary variables.

We can’t get rid of this O(N) easily because we need all the values at different points in time.
What we need to do first is to swap the two for loops. Doing so will not change what’s computed, it
will only change when it’s computed.

24

Task pipeline

1 vector<int> parallel_greedy(int max_ltc, vector<int> const& xs) {

2 const int INF = 1e9; // sentinel

3 vector<int> last(max_ltc+1, xs[0]);

4 vector<int> need(max_ltc+1, 1);

5 for (int i=0; i<xs.size(); ++i) { // xs-loop

6 for (int ltc=1; ltc <= max_ltc; ++1ltc) { // ltc-loop

7 if (xs[i] - last[ltc] > 1ltc) {

8 last[ltc] = xs[i-1]; // gap too large, need to take the last one
9 need[ltc] += 1;

10 }

11 if (xs[i] - last[ltc] > 1ltc)

12 need[1ltc] = INF; // impossible

13 }

14 }

15 for (int ltc=1; ltc <= max_ltc; ++1ltc)

16 if (xs.back() != last[ltc]) // take the last, if not already taken
17 need[ltc] += 1;

18 need.erase(need.begin()); // ltc=0 is uninteresting
19 replace_if(need.begin(), need.end(), [](int n) { return n >= INF; }, -1);
20 return need;

21 }

Now we don’t need to store all N values of x’s anymore at the same time! We only ever look at
xs[i] and xs[i-1]. We can thus read the values on the fly, only storing x (replacing xs[i]) and
x_prev (replacing xs[i-1]). We’ve reached a streaming algorithm that only keeps O(M) values at
the same time, but still computes the same as the correct greedy algorithm.

1 vector<int> streaming_greedy(int max_ltc, int n) {
2 const int INF = 1e9; // sentinel

3 int x, Xx_prev;

4 cin >> x;

5 vector<int> last(max_ltc+1, x);

6 vector<int> need(max_ltc+1, 1);

7 for (int i=1; i<n; ++i) {
8 X_prev = X;
9

cin >> x;
10 for (int ltc=1; ltc <= max_ltc; ++1ltc) {
11 if (x - last[ltc] > 1ltc) {
12 last[ltc] = x_prev; // gap too large, need to take the last one
13 need[ltc] += 1;
14 }
15 if (x - last[ltc] > 1ltc)
16 need[ltc] = INF; // impossible
17 }
18 }
19 for (int ltc=1; 1ltc <= max_ltc; ++1tc)
20 if (x != last[ltc]) // take the last, if not already taken
21 need[ltc] += 1;

22 need.erase(need.begin()); // ltc=0 is uninteresting
23 replace_if(need.begin(), need.end(), [](int n) { return n >= INF; }, -1);
24 return need;

25 }

The solution that runs in (N - M%>(log M)?) will be released in an update to this booklet in the
online version.

25

Swiss Olympiad in Informatics

Solutions First Round 2018/2019

5 Storytelling

In this task you were given n mice sitting around a circular table about to tell their stories. You
were given rules how they were allowed to talk and your goal was to calculate the minimum time
in which all mice could finish storytelling.

Subtasks 1 to 4

The first four subtasks had increasing input size which distingushed among different solutions.
The Subtask 1 was solvable through a bruteforce (e.g., try all n! permutations to find the answer)
and Subtask 2 by a binary search.

To earn a full score one had to come up with a linear (both in time and space) solution which uses
just a few minimums and maximums. One such implementation is listed below. The proof why this
works is discussed in the following section and would earn you full score for the theoretical part.

1 #include <iostream>

2 #include <vector>

3 #include <algorithm>

4

5 using namespace std;

6

7 void schedule(int n, vector<long long>& V, vector<long long>&ret) {
8 ret.resize(n);

10 if m%2==0) { // even case

11 for (int i=0; i<n; ++i)

12 if (A% 2 ==0)

13 ret[i] = V[il; // even mice speak from the beginning

14 else // odd mices speak when they can

15 ret[i] = V[i] + max(V[(i-1+n)%n], V[(i+1)%n]);

16 } else { // odd case

17 long long min_3 = V[n-2] + V[n-1] + V[0];

18 int min_i = 0; // find the mice min_i which will wait for min_i-2 and min_i-1
19 for (int i=0; i<n; ++i) {

20 long long s = V[(n+i-2)%n] + V[(m+i-1)%n] + V[i];

21 if (s < min_3) {

2 min_3 = s;

23 min_i = i;

24 }

25 }

26

27 for (int 1 =min_i + 1; i <min_i +n - 1; ++1) {

28 if (A% 2 '=min_i % 2)

29 ret[i%n] = V[i¥%n]; // odd mices relative to min_i speak first
30 else

31 ret[i%n] = V[i¥n] + max(V[(n+i-1)%n], V[(n+i+1)%n]);

32 }

33 // min_i-1 speaks once min_i-2 is finished

34 ret[(min_i-1+n)%n] = V[(min_i-2+n)%n] + V[(min_i-1+n)%n];

35 // in the end once min_i-1 and min_i+1 are finished min_i speaks
36 ret[min_i] = max(min_3, V[min_i] + V[(min_i+1)%n]);

26

Task storytelling

37 }
38 }
39

'
S)

int main() {

41 int T, N;

42

43 cin >> T;

4 for (int t=0; t<T; ++t) {

45 cin >> N;

16 vector<long long> V(N);

47 for (int i=0; i<N; ++i) cin >> V[i];

48

49 vector<long long> res; // endtimes of speaking

50 schedule(N, V, res);

51 cout << "Case #" << t << ": " << *max_element(res.begin(), res.end()) << '\n';
52 for (int i=0; i<N; ++i)

53 cout << res[i]-V[i] << (@ == N-1 2 "\n" : " ");
54 }

55 }

Subtask 5

In order to have simpler formulas, all mouse indices in this solution are implicitly considered
modulo 7. For example, mouse n + 3 is the same as mouse 3, and y3_, = Y341 = V3.

First, let’s assume that n is even, i.e., n = 2k for some integer k.

We'll start by showing how to find a lower bound: for any instance vy, ..., vy, we will find a time
Y such that no solution can finish earlier than at Y. For each i we can make the following argument:
Mice i and i + 1 cannot speak at the same time, so we know that mouse i cannot be done speaking
and listening sooner than at the time y; + y;+1. Hence, the entire group cannot be done sooner than
at the time Y = maxi<i<n(yi + Vit+1)-

Next, we will show that this Y is also an upper bound. In other words, we will find an algorithm
that will always construct a schedule such that everybody will finish talking by the time Y. One
such algorithm looks as follows:

e All mice with odd indices start telling their stories at time 0.

e Each mouse with an even index starts telling its story as soon as both of its neighbours finish
telling theirs.

Clearly, the last mouse to finish talking will be an even-numbered mouse. Mouse 2; will finish
talking precisely at the time max(y2j-1 + y2j, y2j + y2j+1). It is obvious that the maximum of all
these times is precisely Y.

Now let’s assume that 7 is odd, i.e., n = 2k + 1 for some integer k.

The lower bound shown in the even case still holds, as the argument is valid for any number of
mice. However, in some situations this lower bound cannot be achieved. For example, if we have
three mice with y; = y» = y3 = 1, we get the lower bound Y = 2, but the actual optimal solution
needs 3 seconds. Below, we will show a second lower bound that will cover such situations.

Suppose that we have any valid schedule telling each mouse when it should start speaking. As
the number of mice is odd, there has to be a mouse who starts speaking after one of its neighbors
but before the other one. (The opposite is impossible, because if you only have mice who start

27

,,f' Swiss Olympiad in Informatics
&%’ Solutions First Round 2018/2019

speaking before both neighbors and mice who start speaking after both neighbors, these two type
of mice have to alternate, which is impossible if the total number of mice is odd.)

Without loss of generality, suppose that mice g, ¢ + 1, and q + 2 have the property that mouse
g + 1 speaks after mouse g but before mouse g + 2. Then, mouse g + 2 cannot finish its own story
sooner than at the time y; + y;11 + yg+2.

Note that for the lower bound we now need to take the minimum (and not the maximum) of all
such triples. This is because all we know is that each valid schedule has to contain at least one such
triple, and it is possible that the optimal solution will contain the cheapest of all such triples. Thus,
the second lower bound we get is Y’ = mini<;<,(yi + Yi+1 + Yi+2)-

To finish this task, we will now show an algorithm for n = 2k + 1 that always produces an optimal
solution —i.e., a solution that ends at the time max(Y, Y’). This new algorithm looks as follows:

e Rotate the mice around the table until you get the situation where y, > + y,—1 + y, = Y.
e All mice with odd indices, except for mouse #, can start telling their stories at time 0.

e Each mouse with an even index, except for mouse n — 1, starts telling its story once all its
neighbours from the first group finish telling theirs.

e Mouse 1 — 1 starts telling its story after mouse n — 2.

e Finally, mouse n can tell its story once both its neighbors are done.

Why is this algorithm optimal? The last mouse to finish talking is either an even-numbered
mouse, or mouse 7. An even-numbered mouse 2j will finish telling its story at the time max(y2;-1 +
Y2j, Y2j + y2j+1) < Y. Mouse n will finish its story at the time max(y, + y1, Yn-2 + Yn-1 + yn). The
first of these two is at most Y, while the second one is exactly Y’. As a result, all mice will finish
their stories by the time max(Y, Y’).

Note that the entire algorithm can be implemented in linear time and space — each of the first
three steps can be implemented as a single pass through the array of talking times.

28

Task tankgolf

6 Tank Golf

Scoring

Bugs

10 points were awarded for submitting running code. This means that the submission should
compile and be able to handle all matches without crashing.

Elo

After fixing all crashes, the bots were tested against each other. Each bot was pitted against
every other bot multiple times. An Elo rating was calculated for each bot using the Bayesian Elo
algorithm!. This means that Elo scores were chosen such that they maximize the likelihood of
correctly predicting every match. The Elo ratings of the bots are shown in figure 6.1.

Elo scores r can be converted to playerstrength y using

Y= 10F€0
The win chance of a player E; can then be calculated using

| F—_
Y1t+72

90 points were awarded proportionally to the playerstrength of the submission, i.e. score = 90%.
The maximum score y;f was set at the third place submission by Nicolas Camenisch.

Strategies

Condition checking

By simulating multiple possible shooting directions or spawn locations, each possible outcome can
be tested for a few conditions. This way the bot can recognize which shots will throw the enemy
off the map. Advanced conditions such as trying to return ones own tank back into an upright
position if it was flipped over can be evaluated as alternative options. The main weakness with
checking for conditions directly is that there are too many cases to efficiently cover all of them.

State scoring

Instead of checking for conditions strictly, each condition can be converted into a score. These scores
are added up to give a numeric value to every possible game state. Then, from all possible actions
the highest scoring one is chosen. In addition to the previous conditions, things like distance to the
nearest ledge and distance to the enemy tank can be included in the score.

1https ://www.remi-coulom. fr/Bayesian-Elo/#theory

29

Swiss Olympiad in Informatics

Solutions First Round 2018/2019

1900

1800 +

1700

1600 |

1500

1400

1300 L

1100 |

1000 +

Figure 6.1: Distribution of Elo ratings depending on the rank.

Targeted search

Once a scoring function has been established, possible shooting positions can be refined. As only
a limited number of requests are available, it makes sense to focus the search near high scoring

actions. Variations of gradient ascent can be used to find local maxima.

30

ELO Tankgolf +
N
‘OD
<7
Il
3
&
&
oF
&
&
;
» &
o &
» 7 5
3 P o F g
& ¢ & &
o S s
& £ F 8
;(‘ N -
ﬁ“’gﬂ c}"" il \t\bw
& & &
B & & &
& er
3 b o N b
o A A
&8 58 9 N
P * é“’b &‘\) ﬁ’(\ &
+ G
Q¥ o2 & &7 B
R 7 & 5
M _G@A o ‘}9;, & 2]
- & & & Q7 (%4
Ca & S S 7
& & & & &
+ F & & &5(‘
£ 5\}132’ \‘?\ .
» & ‘oé\\ &
A
W 3 . »
N £
* @/ ~ ,g;‘:'/
CoA &
b Sl a
EE &
+7 o
&
+
& S
W @7
R
ook 3
J N
& \}i@
+ o
o v
+
céa@
G
&
.QoQ
éb\
+
L L L L
5 10 15 20

